

350 West A Street, Suite 203 Casper, Wyoming 82601 307-234-3395 tel • 307-234-3396 fax www.eecwyo.com

May 27, 2015

Wyoming Department of Environmental Quality
Air Quality Division
Mr. Cole Anderson
O&G NSR Permitting
Herschler Building, 2E
122 W. 25th Street
Cheyenne, WY 82002

Sent via Federal Express: Tracking #7736 9647 7514

Re: Oil and Gas Production Facility Air Permit Application

Bear Oil & Gas, Inc. Armour Tank Battery Laramie County, Wyoming

Dear Mr. Anderson:

Enclosed please find an application package consisting of one (1) paper copy with original signature and one (1) electronic copy for the Armour Tank Battery which was prepared following the Air Quality Rules and Regulations Oil and Gas Production Facilities Chapter 6, Section 2 Permitting Guidance Revised September 2013. The Armour 41-17 well location includes an Arrow A-54/VRG 330 pumping unit engine that is currently permitted under Air Quality Permit wv-16641-1. The Armour 42-17 includes a pumping unit engine being proposed under separate application.

The average daily production volumes for the Armour 41-17 as reported to the Oil & Gas Commission were added to the estimated production volumes for the Armour 42-17 and a decline factor of 0.6 applied to perform the emission calculations included with this application. The API E&P TANKS v3.0 program did not return emissions for storage tanks based on the production volume, oil composition, and operating conditions. Alternatively, the Vasquez-Beggs Method was used for tank flashing and the EPA TANKS 4.0.9d program was used to compute the S/W/B losses. Production volumes used for these calculations were the projected volumes using the decline factor. Copies of all the referenced reports are included with this application.

Reviewer 4mB	
cc:	
Modeler	
D.E	
File AOOULY	_
IMP FID 26886	-
	_

WDEQ – Air Quality Division O&G NSR Permitting Bear Oil & Gas, Inc. Armour Tank Battery May 27, 2015 Page 2 of 2

Thank you for your assistance with this permit application. If you have any questions or require additional information please contact Energy Environmental Consulting at (307) 234-3395 or by email to Diana Sojourner at DianaS@eecwyo.com or Thomas Jaap at TomJ@eecwyo.com.

Sincerely,

Diana Sojourner

Environmental Specialist

cc: Jo

John Kelly, Bear Oil & Gas, Inc.

Enclosures:

Application Package with Original Signature

CD with complete application as a PDF and Excel Application Forms

Air Quality Division

New Source Review Permit Application Form

Is this an addendum to an existing application?

	Yes	NoX	Date of	Application:5/19/2015
	Previous Application #:			
COMPANY INFO				
Company Name:		Bear Oil	and Gas, Inc.	
Address:	7	30 17th Street, Suite		
City: Den				Zip Code: 80202
Country:	USA	Phone Num	ber: 720-94	
FACILITY INFORM	MATION:			
Facility Name:		Armour	Tank Battery	
New Facility or Existin	g Facility: Existing			
Facility Description:		Tank Ba	ttery Facility	
Facility Class:	Minor	Operating Sta	tus: Operating	
Facility Type:	Production Site			
For Oil & Gas Product				
	on (FDOP)/Date of Modific	ation: 9/23/20	014	_
	is facility contain H2S?*	No		
*If yes, contact the Di	ivision.			
API Number(s):		49-021-	21452; 49-021-21480	
NAIGC C. I				
NAICS Code:		211111 Crude Petro	leum and Natural Gas Extra	tion
FACILITY LOCATION				
	on in either the latitude/longitu	de area or section/tov	vnship/range area. Both are no	t required.
Physical Address:				
City:		Zip Code:		_
State: WY	County:			
<u>OR</u>				
Latitude: 41.357	162°N Longitude:	-104.100121°W	<u></u>	County: Laramie
Quarter Quarter:		Quarter:		_
Section:	Township:			Range:
		VGS84 datum and 5	digits after the decimal (i.e.	. 41.12345, -107.56789)
CONTACT INFOR	MATION:			
*Note that an Environmental	AND NSR Permitting Contact is requ	red for your application to	be deemed complete by the agency.	
Title: Mr.	First Name:		John	
Last Name:	Kelly			
Company Name:			1ike Davis, LLC	
Job Title:		Landma		
Address:		730 17th Street,		
	Denver	State:	Colorado	
Zip Code: 80202	720.046.6706	17_		
Primary Phone No.:	720-946-6700			@emdllc.com
Mobile Phone No.:	720-810-2244	Fax		0-946-6801
Contact Type:	Responsible Official	Start D	ate:	

Additional Contact Type (if needed): NSR Permitting contact	
Title: First Name: Same as above	
Last Name:	
Company Name:	
Job Title:	
Address:	
City: State:	
Zip Code:	
Primary Phone No.: E-mail:	
Mobile Phone No.:	
Contact Type: Start Date:	
FACILITY APPLICATION INFORMATION:	
General Info:	
Has the facility changed location or is it a new/ greenfield facility?	Yes
Has a Land Use Planning document been included in this application?	
Is the facility located in a sage grouse core area?*	No
	No
If the facility is in a sage grouse core area, what is the WER number?	
* For questions about sage grouse core area, contact WY Game & Fish Department.	
Federal Rules Applicability - Facility Level:	
Prevention of Significant Deterioration (PSD):	No
Non-Attainment New Source Review:	No
Modeling Section:	
Has the Air Quality Division been contacted to determine if modeling is required?	No
Is a modeling analysis part of this application?	No
Is the proposed project subject to Prevention of Significant Deterioration (PSD) requirements?	No
Has the Air Quality Division been notified to schedule a pre-application meeting?	No
Has a modeling protocol been submitted to and approved by the Air Quality Division?	No
Has the Air Quality Division received a Q/D analysis to submit to the respective FLMs to	140
determine the need for an AQRV analysis?	No
11. 17. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	INO
Required Attachments:	
Facility Map	
Process Flow Diagram	
Modeling Analysis (if applicable)	
Land Use Planning Document	
Detailed Project Description	
Emissions Calculations	
	lman
Responsible Official (Printed Name)	tle
an Official Representative of the Company, state that I have knowledge of the facts herein set for	
are true and correct to the best of my knowledge and belief. I further certify that the operationa	l information provided
and emission rates listed on this application reflect the anticipated emissions due to the operation	on of this facility. The
facility will operate in compliance with all applicable Wyoming Air Quality Standards and Regulat	
/ / /	
1 / 4 // 1/	- 10
Signature: Date	= 5-19-15
(ink) /)	
· · · · · · · · · · · · · · · · · · ·	

Bear Oil & Gas, Inc.
Armour Tank Battery
NENE Section 17, T16N, R60W
Statewide
Armour 41-17; API #49-021-21452
Armour 42-17; API #49-021-21480

The Armour Tank Battery is located in the NENE quarter of Section 17, T16N, R60W in Laramie County within the Statewide area. This tank battery receives production from the Armour 41-17 well and will begin receiving production from the Armour 42-17 within the next month.

Equipment

Air emission sources shown on the attached Facility Diagram include the following:

- Four (4) 400 bbl crude oil aboveground storage tanks with vapors routed to an ECD;
- One (1) 0.5 MMBtu/hr tank heater fueled by produced gas;
- One (1) 48" Cimarron Emission Control Device (ECD) to control storage tank emissions;
- One (1) low pressure 3-phase 6'x20'vertical heater treater with a 0.75 MMBtu/hr burner fueled by produced gas;
- One (1) emergency flare;
- · Truck loading; and
- One (1) Arrow A-54/VRG 330 pumping unit engine at the Armour 41-17 fueled by produced gas (currently permitted under wv-16641-1).
- One (1) pumping unit engine at the Armour 42-17 (proposed under separate application)

Process Description

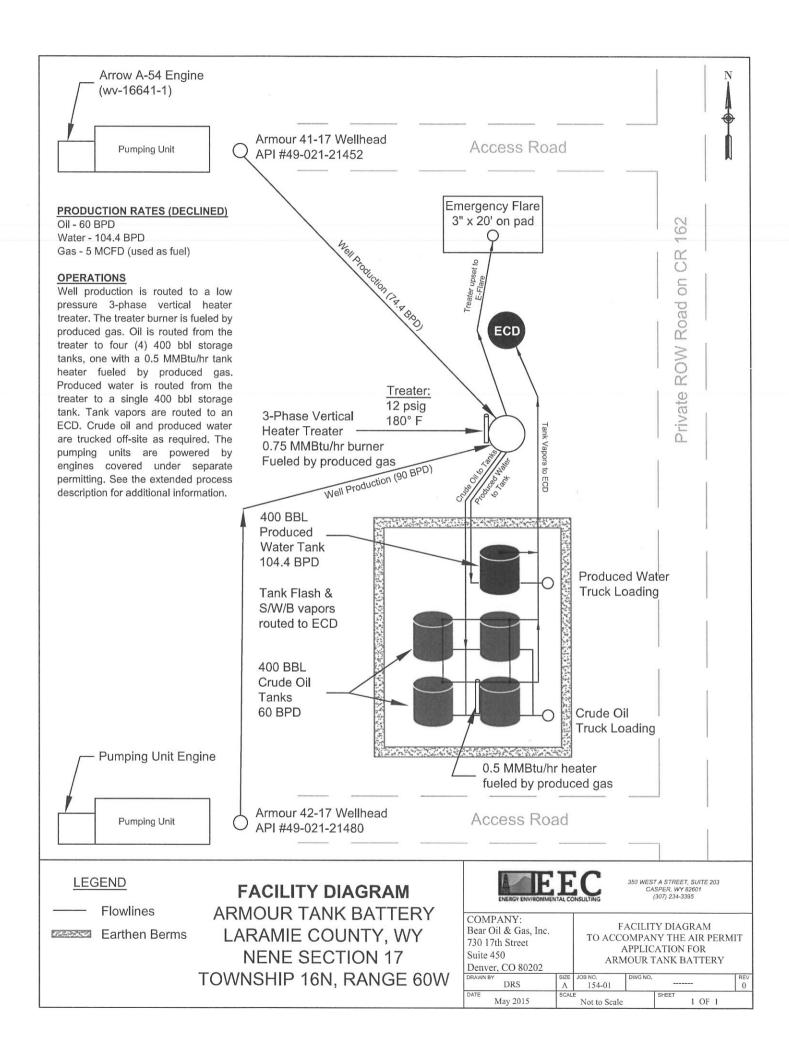
The facility consists of a two (2) production wells. The Armour 41-17 pumping unit is powered by an Arrow A-54/VRG 330 with a site rated horsepower of 36.6-HP and a maximum rated horsepower of 68-HP. The engine is controlled with a non-selective catalytic reduction (NSCR) catalyst and air-fuel ratio controller (AFRC). The Armour 42-17 pumping unit will also be powered by a pumping unit engine.

Well production is routed to a low pressure 3-phase vertical heater treater for separation of crude oil, produced water, and gas. Crude oil is routed to four (4) 400 bbl storage tanks with tank vapors routed to an ECD. The ECD is a 48" standard with a Pad ARC ignition system and a data logger. Produced water from the treater is routed to one (1) 400 bbl aboveground storage tank. Crude oil and produced water are trucked off site as needed.

An emergency flare is located north of the process equipment for use during emergency or upset conditions. There are no pneumatic pumps or pneumatic controllers at this location. Produced gas is used to fuel the heater treater and tank heater burners and the pumping unit engines. The location of the equipment is shown on the attached Facility Plot Plan.

A crude oil analysis is attached. No H_2S was reported in the crude oil analysis; therefore, no SO_2 or H_2S emission calculations are included with this application.

Bear Oil & Gas, Inc.
Armour Tank Battery
NENE Section 17, T16N, R60W
Statewide
Armour 41-17; API #49-021-21452
Armour 42-17; API #49-021-21480


Production Rates

Estimated production quantities are as follows:

- Oil -70 + 30 = 100 bbls/day average production rate
 - o 60 bbls/day Estimated using the decline factor of 0.6
- Water 54 + 120 = 174 bbls/day average production rate
 - o 104.4 bbls/day Estimated using the decline factor of 0.6
- Gas 5 Mcf/day (used to fuel on-site equipment)

Pertinent Dates

Armour 41-17 Pumping Unit Engine Installation: 9/22/2014
Armour 41-17 Date of first production: 9/26/2014
Armour 42-17 Pumping Unit Engine Installation: 5/31/2015 (estimated)
Armour 42-17 Date of first production: 5/31/2015 (estimated)

AMERICAN MOBILE RESEARCH, INC.

1955 CBS COURT CASPER, WYOMING 82604 (307) 235-4590 OFFICE PHONE (307) 265-4489 OFFICE FAX

EXTENDED HYDROCARBON GAS (GLYCALC) STUDY

CERTIFICATE OF ANALYSIS

Company BEAR OIL 8	GAS COMPANY	
Lab Number CR-15311	Study Number CR-1	
Date Sampled 1-26-2015	Date Tested 2-2-2015	
Sample Identification		
	SE NE SECTION 17, TOWNSHIP 16N, RANGE 60W	
Sample Location WYOMING.		
Sample Pressure 11 PSIG	Sample Temperature 174 F	
Type Sample SPOT	County LARAMIE	
Test Method GPA-2286	Moisture Content N/A	

Components	Mole %	Weight %	Liq. Vol. %
Carbon Dioxide	ALCOHOL BY A CHARLES	REAL PROPERTY OF THE PROPERTY OF THE PERSON	
	1.154	1.418	0.813
Hydrogen Sulfide	0.000	0.000	0.000
Nitrogen	1.213	0.948	0.551
Methane	43.562	19.507	30.478
Ethane	9.705	8.146	10.711
Propane	20.862	25.678	23.720
iso-Butane	3.525	5.719	4.760
n-Butane	10.251	16.631	13.338
iso-Pentane	2.832	5.703	4.274
n-Pentane	2.803	5.645	4.193
Cyclopentane	0.174	0.341	0.213
n-Hexane	0.562	1.352	0.954
Cyclohexane	0.159	0.374	0.223
Other Hexanes	1.183	2.846	2.008
Heptanes	1.369	3.829	2.607
Methylcyclohexane	0.208	0.570	0.345
2,2,4-Trimethylpentane	0.120	0.383	0.257
Benzene	0.046	0.100	0.053
Toluene	0.079	0.203	0.109
Ethylbenzene	0.008	0.024	0.013
Xylenes	0.021	0.062	0.034
C8+ Heavies	0.164	0.523	0.347
Totals	100.000	100.000	100.000

ADDITIONAL BETX DATA

Components	Mole %	Weight %	Liq. Vol. %	
Cyclopentane	0.174	0.341	0.213	
Cyclohexane	0.159	0.374	0.223	
2-Methylpentane	0.849	2.042	1.440	
3-Methylpentane	0.334	0.804	0.567	
n-Hexane	0.562	1.352	0.954	
Methylcyclohexane	0.208	0.570	0.345	
2,2,4-Trimethylpentane	0.120	0.383	0.257	
Benzene	0.046	0.100	0.053	
Toluene	0.079	0.203	0.109	
Ethylbenzene	0.008	0.024	0.013	
m-Xylene	0.003	0.009	0.005	
p-Xylene	0.013	0.037	0.020	
o-Xylene	0.005	0.016	0.008	
TOTAL GPM (ETHANE CALCULATED BTU / RICALCULATED BTU / RICALCULATED BTU / RICALCULATED MOLAR MASS RATIO RELATIVE DENSITY (CIDEAL GROSS HEATING	E INCLUSIVE). EAL CF AT 14.73 EAL CF AT 14.73 R WEIGHT G x Z (Air) / Z), G VALUE, BTU	ed	lated	1.2370 16.469 2056.181 2020.660 35.826 1.2370 0.000 2027.424 0.98828
BUTANE GPM		AVIER)		5.7327 4.3741 3.7734

NOTATION: ALL CALCULATIONS PERFORMED USING PHYSICAL CONSTANTS FROM GPA 2145-09, THE TABLES OF PHYSICAL CONSTANTS FOR HYDROCARBONS AND OTHER COMPOUNDS OF INTEREST TO THE NATURAL GAS INDUSTRY.

James A. Kane, President American Mobile Research, Inc.

AMERICAN MOBILE RESEARCH, INC.

P.O. BOX 2909 CASPER, WYOMING 82602 (307) 235-4590 PHONE (307) 265-4489 FAX

EXTENDED HYDROCARBON (GLYCALC) LIQUID STUDY

CERTIFICATE OF ANALYSIS

Company BEAR OIL 8	& GAS COMPANY	
Lab Number CR-15311	Study Number	CR-2
Date Sampled 1-26-2015	Date Tested	2-5-2015
Sample Identification	ARMOUR #41-17 PRESSURIZED CRUDE OIL	
	SE NE SECTION 17, TOWNSHIP 16N, RANGE 60W	
Sample Location WYOMING.		
Sample Pressure 11 PSIG	Sample Temperature	174 F
Type Sample SPOT	County	LARAMIE
Test Method GPA 2186	Sampling Method	GPA-2174

Components	Mole %	Weight %	Liq. Vol. %
Hydrogen Sulfide	0.000	0.000	0.000
Oxygen	0.000	0.000	0.000
Carbon Dioxide	0.005	0.001	0.001
Nitrogen	0.000	0.000	0.000
Methane	0.009	0.001	0.002
Ethane	0.047	0.008	0.017
Propane	0.593	0.148	0.226
iso-Butane	0.512	0.168	0.232
n-Butane	2.287	0.753	0.999
iso-Pentane	1.220	0.498	0.618
n-Pentane	1.589	0.649	0.798
Hexanes	1.364	0.665	0.777
Heptanes	4.832	2.741	3.087
Octanes	12.479	8.070	8.854
Nonanes	10.614	7.707	8.272
Decanes+	59.003	75.547	73.210
Benzene	0.228	0.101	0.088
Toluene	0.973	0.508	0.451
Ethylbenzene	0.457	0.275	0.244
Xylenes	2.381	1.431	1.281
n-Hexane	1.136	0.554	0.647
2,2,4-Trimethylpentane	0.271	0.175	0.195
Totals	100.000	100.000	100.000

ADDITIONAL BETX DATA

Components	Mole %	Weight %	Liq. Vol. %	
2-Methylpentane	0.975	0.476	0.555	
3-Methylpentane	0.389	0.190	0.221	
n-Hexane	1.136	0.554	0.647	
2,2,4-Trimethylpentane	0.271	0.175	0.195	
Benzene	0.228	0.101	0.088	
Toluene	0.973	0.508	0.451	
Ethylbenzene	0.457	0.275	0.244	
m-Xylene	0.357	0.215	0.192	
p-Xylene	1.429	0.859	0.769	
o-Xylene	0.595	0.358	0.320	
				51.0
				0.77520
			calculated	0.79994
				176.638
AVERAGE MOLECULAR	WEIGHT OF D	ECANES+ (C10+) FRACTIO	N, calculated	226.165
				4.349
AVERAGE BOILING POIN	IT, F, calculate	d		409.493
			1	17.651
BTU / GALLON OF LIQUII	OAT 14.73 PS	IA, calculated		125,411,49

NOTATION: ALL CALCULATIONS PERFORMED USING PHYSICAL CONSTANTS FROM GPA 2145-09, THE TABLES OF PHYSICAL CONSTANTS FOR HYDROCARBONS AND OTHER COMPOUNDS OF INTEREST TO THE NATURAL GAS INDUSTRY.

LBS / GALLON OF LIQUID, calculated

James A. Kane, President American Mobile Research, Inc. 6.463

(307) 235-4590 PHONE (307) 265-4489 FAX

EXTENDED HYDROCARBON LIQUID STUDIES

CERTIFICATE OF ANALYSIS

Company BEAR OIL & GAS COMPANY	
Lab Number CR-15311	Study Number CR-3
Date Sampled 1-26-2015	Date Tested 2-5-2015
Sample Identification ARMOUR #41-17 FLASHED CRU	JDE OIL
SE NE SECTION 17, TOWNSHI	P 16N, RANGE 60W
Sample LocationWYOMING.	
Sample Pressure ATMOSPHERIC	Sample Temperature AMBIENT
FlowrateN/A	CountyLARAMIE
Test MethodVARIOUS	Sample Container1-QUART BOTTLE

TEST PERFORMED	RESULTS
API GRAVITY AT 60/60 F (ASTM D-287), observed	35.9
SPECIFIC GRAVITY AT 60/60 F (ASTM D-1657), calculated	0.8453
REID VAPOR PRESSURE (ASTM D-323), PSIG AT 100 F, observed	4.4
TOTAL SULFUR CONTENT (ASTM D-5453), PPMW	N/A
TRUE VAPOR PRESSURE (ASTM 2889), PSIA AT 100 F, observed	N/A
BASIC SEDIMENT AND WATER CONTENT (BSW), % BY VOLUME	N/A
COPPER STRIP CORROSION (ASTM D-130), 1 HOUR AT 100 F, observed	N/A
FREE WATER, observed	N/A

NOTATION: ALL TESTING PROVIDED ABOVE WAS PERFORMED IN ACCORDANCE TO METHODOLOGY OUTLINED BY THE AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM).

James A. Kane, President

American Mobile Research, Inc.

Bear Oil & Gas, Inc.
Armour Tank Battery
Laramie County - Statewide
Armour 41-17; API #49-021-21452
Armour 42-17; API #49-021-21480

Emissions Summary

Emission Source	NOx (TPY)	CO (TPY)	VOC (TPY)	HAP (TPY)	H ₂ S (TPY)	SO ₂ (TPY)	Calculation Method	Calculations
Truck Loading	1	-	0.78	0.078	0.00		AQD Approved Calc Methods & Practices	Attached
Tanks	-		2.95	0.38	0.00		VB Equation (flashing) + EPA Tanks 4.0.9d (S/W/B)	Attached
Fugitive	-		1.91	0.28	0.00	-	AQD Approved Calc Methods & Practices	Attached
Tank Heater	0.03	0.02	-	l	1	0.00	0.00 AQD Approved Calc Methods & Practices	Attached
Heater Treater (vents)				1			N/A - Gas is routed to the pumping unit engines, and heater treater and tank heater burners for fuel	N/A
Heater Treater (burner)	0.65	0.55	-	l	1	0.00	0.00 AQD Approved Calc Methods & Practices	Attached
TOTAL	0.68	0.57	5.64	0.74	0.00	0.00		

NOTES: HAP emissions were assumed to be 10% of VOC emissions for truck loading and for storage tank S/W/B emissions.

No H₂S was reported in the crude oil analysis; therefore, no SO₂ or H₂S emission calculations are included with this application.

Emissions shown for each source are in accordance with those indicated on the table in the C6 S2 O&G Production Facilities Permitting Guidance, September 2013, Page 64 of 76.

For all emission calculations used in this application, actual production was used to determine the average production rate.

Specific Emission Unit Attributes:

Loading/Unloading/Dump

Company Equipment ID: Armour Tan	k Battery Truck Loading	
Company Equipment Description:	Truck Loading	
Operating Status: Operating		
Initial Construction Commencement Date:		
Initial Operation Commencement Date:	9/23/2014	
Most Recent Construction/ Modification		
Commencement Date:	5/31/2015 (estimated)	
Most Recent Operation Commencement Date:	5/31/2015 (estimated)	
Select reason(s) for this emissions unit being i		oleted regardless of date of
installation or modification):	.,	3
Reason: Construction (Greenfield	d/New Facility)	
If reason is <i>Reconstruction</i> or <i>Temporary Pern</i>	in on other, please explain below.	
Type of Material: Liquid Crude Oil		
Maximum Annual Throughput: 21,900	Units	: barrels/yr
Maximum Hourly Throughput: 2.5	Units	
Detailed Description of Loading/Unloading/Dur	mp Source:	
Truck loading of crude oil from aboveground st	orage tanks	
SCC Codes: List all Source Classification Code(s) (e.g., 1-02-002-04).	(SCC) that describe the process(es) performance (SCC) that describe the process (SCC) that describes (SCC	rmed by the emission source
Potential Operating Schedule: Provide the	operating schedule for this emission unit.	
Hours/day: 2 (when load	ded)	
Hours/year: 200		

Control Eq	quipment: No	
If yes, plea	ase fill out and attach the appropriate Control Device and Re	lease Point Information worksheets.
Best Availa	able Control Technology (BACT): Was a BACT Analysis comp	eted for this emission unit?
	Yes No	
Pollutant:		
Proposed I		
*If yes, att	each BACT Analysis with this application.	
Lowest Ac	chievable Emission Rate (LAER): Was a LAER Analysis comple	ted for this emission unit?
	Yes 🔻 No	
Pollutant:	-	
Proposed I	LAER:	
	ach LAER Analysis with this application.	
Federal an	nd State Rule Applicability:	
New Source	ce Performance Standards (NSPS): Not Affect	ed
	New Source Performance Standard are listed under 40 CFR 6	50-
	Standards of Performance for New Stationary Sources.	
	NSPS Subpart:	
National E	mission Standards for Hazardous Air Pollutants (NESHAP Part	61): Not Affected
	National Emissions Standards for Hazardous Air Pollutants (
	(These include asbestos, benzene, beryllium, mercury, and v	vinyl chloride).
	Part 61 NESHAP Subpart:	
National F	mission Standards for Hazardous Air Pollutants (NESHAP Part	63): Not Affected
Tracional E	National Emission Standards for Hazardous Air Pollutants (N	
	standards are listed under 40 CFR 63	IESHAF Fait 03)
	Part 63 NESHAP Subpart:	
Prevention	n of Significant Deterioration (PSD):	ed h
	These rules are found under WAQSR Chapter 6, Section 4.	
Non-Attair	nment New Source Review: Not Affected	
	These rules are found under WAQSR Chapter 6, Section 13.	

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

			Effic	iency Standards			
		Pre-Controlled	Potential		Potential	Potential	
Truck Loading	,	Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Criteria Pollutants:	·						
1.)							
	ate emissions						
(PE/PM) (formerly	=== = =					
100000000000000000000000000000000000000	ate matter,		1.0				
PM)							
2.)							
PM #10	microns in						
	er (PE/PM10)						
3.)		-					
100000000000000000000000000000000000000	5 microns in						
	er (PE/PM2.5)						
	dioxide (SO2)						
5.) Nitroge	n Oxides						
(NOx)							
6.) Carbon	monoxide						
(CO)							
7.) Volatile		0.78			0.18	0.78	Other
	unds (VOC)				0.10	0.70	Other
8.) Lead (P							
	azardous Air	0.078			0.018	0.078	Other
	nts (HAPs)				0.010	0.070	Other
10.) Fluoride							
11.) Hydrog (H2S)	en Sulfide	0			0	0	Test results for this source
12.) Mercur	y (Hg)						
13.) Total Re	educed Sulfur						
(TRS)						10 market 1981 (1981)	
14.) Sulfurio	Acid Mist						
(SAM)							

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminents

		Effic	ciency Standards	1		
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Greenhouse Gases (GHGs)

			Effic	iency Standards			
	Pre-	-Controlled	Potential		Potential	Potential	
	Pote	ential Emissions	to Emit		to Emit	to Emit	Basis for
	(ton	ns/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:							
1.)							
2.)							
3.)							
4.)							
5.)							
6.)							
7.)							
8.)							

Bear Oil & Gas, Inc.
Armour Tank Battery
Laramie County - Statewide
Armour 41-17; API #49-021-21452
Armour 42-17; API #49-021-21480

Truck Loading

 $L_L = 12.46*S*P*M/T$

S (Saturation Factor)

P (True vapor pressure)

M (Molecular weight of tank vapors)

Temperature of bulk liquid loaded= deg R (deg F+ 460)

0.6 Table 5.2-1

2.3 Table 7.1-2

50 Table 7.1-2

510 Table 7.1-2 (50 + 460)

L_L 1.69 lb/1000 gallons loaded

Average Production = 1,825 bbl/mo 1,825 bbls = 76,650 gallons/month Assumes 220 bbl Tank Truck at 2 hrs to load

VOC Emissions 0.78 TPY HAP Emissions (assumed to be 10% of VOCs) 0.078 TPY

Specific Emission Unit Attributes:

Storage Tank/Silo

Company Equipment ID: Armo	our Tank Battery Oil S	orage Tanks		
Company Equipment Description:	Oil Storage T	anks		
Operating Status: Operating				
Initial Construction Commencement Da	ite:			
Initial Operation Commencement Date		9/23/2014		
Most Recent Construction/ Modification	n			
Commencement Date:	5,	'31/2015 (estimate	ed)	
Most Recent Operation Commencemer	nt Date: 5,	'31/2015 (estimate	ed)	
Select reason(s) for this emissions unit				eted regardless of date
of installation or modification):			•	
Reason: Construction (Gr	eenfield/New Facility)		
If reason is Reconstruction or Tempore	ary Permit or Other	nlease evnlain held)///·	
Treason is neconstruction of rempore	ny remine of other,	piease expiairi bei	JVV.	
Material Type: Liquid				
Description of Material Stored:	Crude Oil sto	red in 4 abovegro	und storage	tanks
Capacity: 400		nits: barrels		
Maximum Throughput: 60			Units:	barrels/day
Maximum Hourly Throughput: 2.5			Units:	barrels/hr
Operating Pressure (psig): 1				
Vapor Pressure of Material Stored (psig	g): 4.349			
Is Tank Heated?: No 3 tan	ks are not heated			
Yes 1 tan	k is heated			
SCC Codes: List all Source Classification		scribe the process	(es) perforr	med by the emission
source (e.g., 1-02-002-04).	(-) ()	, , , , , , , , , , , , , , , , , , ,	(00) 0	
(-8.,				
	404003	12		
	404003	1.2		
Potential Operating Schedule: Provi	ide the operating sch	dula for this amis	sion unit	
Hours/day: 24	ac the operating still	dule for tills eillis	sion unit.	
The second control of				
Hours/year: 8760				

Control Equipment: Yes
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ✓ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Fodoval and State Bula Applicability
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Subject, but exempt New Source Performance Standard are listed and are 10 CFR CO
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO
NSFS Subpart.
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
moso rules are tound under WAQSIN Ottaplet 0, Section 4.
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Efficiency Standards Pre-Controlled Potential Potential Potential Oil Storage Tanks Potential Emissions to Emit to Emit to Emit Basis for (PTE) (tons/yr) (tons/yr) Units (lbs/hr) Determination Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) PM #10 microns in diameter (PE/PM10) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic 2.95 0.67 2.95 Tanks Program compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air 0.38 0.09 0.38 Tanks Program Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide Test results for this 0 0 0 (H2S) source 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist (SAM)

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminents

			Efficiency Standards				
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						-	
1.)							
2.)			Variation and the second				
3.)							
4.)							
5.)	×						
6.)							
7.)							
8.)							

Greenhouse Gases (GHGs)

					-		
			Effic	ciency Standards			
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants	:	<u> </u>			-	-	
1.)							
2.)							
3.)							
4.)							
5.)							
6.)							
7.)							
8.)							

```
**********************************
* Project Setup Information
*************************
Project File : C:\Documents\Projects\154 Edward Mike Davis, LLC\154-01 Air Permitting\Armour 41-17 Fationsheet Selection : Oil Tank with Separator
Calculation Method : RVP Distillation
Control Efficiency
Control Efficiency : 99.00%
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
                  : C10+
Component Group
Filed Name
                  : WC
                   : Armour Tank Battery
Well Name
Date
                   : 2015.05.08
************************************
* Data Input
*************************
Separator Pressure (psia)
                        : 12.00
Separator Temperature (F) : 180.0
                       : 0.80
C10+ SG
C10+ MW(lb/lbmol)
                        : 226.16
-- Low Pressure Oil -----
   Component Mole% Wt%
                   0.0000 0.0000
1
                     0.0000 0.0000
    02
2
3
    CO2
                     0.0050
                           0.0012
4
    N2
                    0.0000
                           0.0000
                    0.0090
                           0.0008
5
    C1
    C2
                    0.0470
                           0.0080
6
7
    C3
                    0.5930
                           0.1480
8
    i-C4
                    0.5120
                           0.1685
                    2.2870
9
    n-C4
                           0.7525
10
    i-C5
                           0.4983
                   1.5890
                           0.6490
   n-C5
11
                   1.3640
    C6
                           0.6653
12
13
    C7
                           2.7410
                   12.4790
14
    C8
                           8.0699
                   10.6140 7.7081
59.0030 75.5456
15
    CO
16
    C10+
                    0.2280
                           0.1008
17
    Benzene
                   0.9730
                           0.5075
18
    Toluene
                   0.4570
2.3810
                           0.2747
19
    E-Benzene
   Xylenes
20
                           1.4311
21
    n-C6
                    1.1360 0.5542
22
    224Trimethylp
                    0.2710 0.1753
-- Sales Oil
Production Rate (bbl/day) : 60.00
Days of Annual Operation
                     : 365
                    : 35.90
API Gravity
Ambient Pressure (psia) : 12.20 : 180.0
Reid Vapor Pressure (psia) : 4.40
****************************
  Calculation Results
**************************
              Uncontrolled Controlled
               ton
                         ton
```

Total	HAPs	0.0000	0.0000
Total	HC	0.0000	0.0000
VOCs,	C2+	0.0000	0.0000
VOCs,	C3+	0.0000	0.0000
CO2		0.0000	
CH4		0.0000	

Uncontrolled Recovery Information:

Vapor (mscfd): 0.0000

HC Vapor (mscfd): 0.0000

CO2 (mscfd): 0.0000

CH4 (mscfd): 0.0000

GOR (SCF/STB): 0.0000

E	mission Composition		
No	Component	Uncontrolled	Controlled
		ton	ton
1	H2S	0.0000	0.0000
2	02	0.0000	0.0000
3	CO2	0.0000	0.0000
4	N2	0.0000	0.0000
5	C1	0.0000	0.0000
6	C2	0.0000	0.0000
7	C3	0.0000	0.0000
8	i-C4	0.0000	0.0000
9	n-C4	0.0000	0.0000
10	i-C5	0.0000	0.0000
11	n-C5	0.0000	0.0000
12	C6	0.0000	0.0000
13	Benzene	0.0000	0.0000
14	Toluene	0.0000	0.0000
15	E-Benzene	0.0000	0.0000
16	Xylenes	0.0000	0.0000
17	n-C6	0.0000	0.0000
18	224Trimethylp	0.0000	0.0000
19	Pseudo Comp1	0.0000	0.0000
20	Pseudo Comp2	0.0000	0.0000
21	Pseudo Comp3	0.0000	0.0000
22	Pseudo Comp4	0.0000	0.0000
23	Pseudo Comp5	0.0000	0.0000
24	Total	0.0000	0.0000

S	tream Data							
No	Component	MW	LP Oil	Flash Oil	Sales Oil	Flash Gas	W&S Gas	Total Emission
		1b/1bmol	mole %	mole %	mole %	mole %	mole %	mole %
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.0050	0.0050	0.0050	0.0000	0.0000	0.0000
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1	16.04	0.0090	0.0090	0.0090	0.0000	0.0000	0.0000
6	C2	30.07	0.0470	0.0470	0.0470	0.0000	0.0000	0.0000
7	C3	44.10	0.5930	0.5930	0.5930	0.0000	0.0000	0.0000
8	i-C4	58.12	0.5120	0.5120	0.5120	0.0000	0.0000	0.0000
9	n-C4	58.12	2.2870	2.2870	2.2870	0.0000	0.0000	0.0000
10	i-C5	72.15	1.2200	1.2200	1.2200	0.0000	0.0000	0.0000
11	n-C5	72.15	1.5890	1.5890	1.5890	0.0000	0.0000	0.0000
12	C6	84.00	1.3640	1.3640	1.3640	0.0000	0.0000	0.0000
13	Benzene	78.11	0.2280	0.2280	0.2280	0.0000	0.0000	0.0000
14	Toluene	92.14	0.9730	0.9730	0.9730	0.0000	0.0000	0.0000
15	E-Benzene	106.17	0.4570	0.4570	0.4570	0.0000	0.0000	0.0000
16	Xylenes	106.17	2.3810	2.3810	2.3810	0.0000	0.0000	0.0000
17	n-C6	86.18	1.1360	1.1360	1.1360	0.0000	0.0000	0.0000
18	224Trimethylp	114.23	0.2710	0.2710	0.2710	0.0000	0.0000	0.0000
19	Pseudo Compl	115.60	35.7949	35.7949	35.7949	0.0000	0.0000	0.0000
20	Pseudo Comp2	159.67	17.8530	17.8530	17.8530	0.0000	0.0000	0.0000
21	Pseudo Comp3	210.95	14.5092	14.5092	14.5092	0.0000	0.0000	0.0000
22	Pseudo Comp4	282.94	11.8810	11.8810	11.8810	0.0000	0.0000	0.0000

23 Pseudo Comp5 436.46	6.8899	6.8899	6.8899	0.0000	0.0000	0.0000
MW (lb/lbmol): Stream Mole Ratio: Stream Weight Ratio: Total Emission (ton): Heating Value (BTU/sof): Gas Gravity (Gas/Air):	LP Oil 174.63 1.0000 174.63	Flash Oil 174.63 1.0000 174.63	Sales Oil 174.63 1.0000 174.63	Flash Gas	W&S Gas 0.00	Total Emission 0.00
Bubble Pt. @100F (psia):	3.77	3.77	3.77			
RVP @100F (psia):	2.89	2.89	2.89			
Spec. Gravity @100F:	0.74	0.74	0.74			

Company Name:

Bear Oil & Gas, Inc.

Facility Name:

Armour Tank Battery

Volatile Organic Compound Emission Calculation for Flashing

Vasquez - Beggs Solution Gas/Oil Ratio Correlation Method

(For Estimating Flashing Emissions, Using Stock Tank Gas-Oil Ratios For Crude Oil Facilities)

INPUTS:

Stock Tank API Gravity	35.9	30
Treater Pressure (psig)	12	Pi
Treater Temperature (F)	180	Ti
Separator Gas Gravity	1.18	SGI
Stock Tank Barrels of Oil per day (BOPD)	60	Q
Stock Tank Gas Molecular Weight (lb/lb-mol)	36	MW
VOC Weight Fraction of Stock Tank Gas	0.70	VOC
HAP Weight Fraction of Stock Tank Gas	0.10	HAP
Atmospheric Pressure (psia)	12.2	Patm

CONSTRAINTS:

crude oil gravity < 40 degrees API operating pressure < 5250 psia operating temperature < 295 degrees F SG between 0.56 and 1.18

MW between 14 and 125 lb/lb-mol

Rs = (C1 * SGx * (Pi + Patm)^C2) exp ((C3 * API) / (Ti + 460))

Where:

Rs = Gas/Oil Ratio of liquid at pressure of interest

SGx = Dissolved gas gravity at 100 psig Pi = Pressure of initial condition (psia)

API = API Gravity of liquid hydrocarbon at final condition

Ti = Temperature of initial condition (F)

Constants		API Gravity < 30	API Gravity >= 30
C1	=	0.0362	0.0178
C2	=	1.0937	1.187
C3	=	25.724	23.931

SGx = Dissolved gas gravity at 100 psig

= SGi [1.0+0.00005912*API*Ti*Log((Pi + Patm)/100 + Patm)]

0.0178

SGi = Gas gravity at initial condition

SGx = 0.88

for the above API Gravity input, C1 = C2 =

C2 = 1.187 C3 = 23.931

Rs = 2.63 scf/bbl for P + Patm = 3 24.2

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lb.s

THC = Total Hydrocarbon (tons/year)
Rs = Solution Gas/Oil Ratio (scf/STB)

Q = Oil Production Rate (bbl/day)

MW = Molecular Weight of Stock Tank Gas (lb/lb-mole)

385 = Volume of 1 lb-mole of gas at 14.7 psia and 68 F (WAQS&R Std Cond)

THC = 2.7 TPY

VOC = THC * Frac. of VOC in the Stock Tank Vapor

VOC 1.88 TPY

HAP = THC * Frac. of HAP in the Stock Tank Vapor

HAP 0.27 TPY

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Armour Tank Battery Pine Bluffs Myoming Bear Oil & Gas, Inc. Vertical Fixed Roof Tank Four (4) 400 bbl Oil Storage Tanks	20.00 12.00 20.00 16,920.59 54.36 919,800.00		0.00
Armour Tank Battery Pine Bluffs Wyoming Bear Oil & Gas, Inc. Vertical Fixed Roof Tank Four (4) 400 bbl Oil Store	z	Gray/Medium Good Gray/Medium Good	Cone
Identification User Identification: City: State: Company: Type of Tank: Description:	Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft): Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)

Meterological Data used in Emissions Calculations: Cheyenne, Wyoming (Avg Atmospheric Pressure = 11.76 psia)

-0.03

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Armour Tank Battery - Vertical Fixed Roof Tank Pine Bluffs, Wyoming

Basis for Vapor Pressure	Calculations	Option 4: RVP=5
Mol.	Weight	207.00
Vapor Mass	Fract.	
Liquid	Fract.	
Vapor Mol.	Weight.	50.0000
(psia)	Max.	3.2330
r Pressure (psia)	Min.	2.0689
Vapor	Avg.	2.5988
Liquid Bulk Temp	(deg F)	48.68
urf. eg F)	Max.	65.99
Daily Liquid Surf. Temperature (deg F)	Min.	43.72
Tem	Avg	54.86
	Month	All
	Mixture/Component	Crude oil (RVP 5)

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Armour Tank Battery - Vertical Fixed Roof Tank Pine Bluffs, Wyoming

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Crude oil (RVP 5)	1,533.54	604.43	2,137.97

Specific Emission Unit Attributes:

Heater/Chiller

Company Equipment ID:		Armour Tar	nk Battery Tank Heate	r		
Company Equipment Description:			Tank Heater			
Operating Status:	Operating					
Initial Construction Comm	nencemen	it Date:				
Initial Operation Commer	ncement D	Pate:	9/23	3/2014		-1
Most Recent Construction	n/ Modific	ation				
Commencement Date:			5/31/2015	6 (estimate	d)	
Most Recent Operation C	Commence	ement				67
Date:			5/31/2015	5 (estimate	d)	
Select reason(s) for this e	emissions	unit being i	included in this applic	ation (mus	t be complet	ed regardless of date
of installation or modific	ation):			_		
Reason: C	Construction	on (Greenfie	eld/New Facility)			
						
If reason is Reconstruction	on or Tem	porary Pern	nit or Other , please e	xplain belo	w:	
Firing Type:	Direct					
Heat Input Rating: 0).5			Units:	MMBtu/hr	
Primary Fuel Type:	ield Gas					
Secondary Fuel Type:						
Heat Content of Fuel: 2	2056				Units:	BTU/scf
Fuel Sulfur Content: 0)			Units:	ppm	
						5
SCC Codes: List all Source	Classifica	tion Code(s)) (SCC) that describe t	he processi	(es) performe	ed by the emission
source (e.g., 1-02-002-04)).					
			31000128			
Potential Operating School	edule:	Provide the	e operating schedule f	or this emis	ssion unit.	
Hours/day:		24 (when in	n use)			
Hours/year:		576				
100- 5 0				_		

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.	
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?	
☐ Yes ✓ No	
Pollutant:	
Proposed BACT:	
*If yes, attach BACT Analysis with this application.	
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No Pollutant:	
Proposed LAER:	
*If yes, attach LAER Analysis with this application.	
Federal and State Rule Applicability:	
New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart:	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected	
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:	CFR
National Emission Standards for Harandous Air Ballutants (NESHAD Bart C2).	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:	
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.	
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6, Section 13.	

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Efficiency Standards

Storage Tank Heater Pre-Controlled Potential to Emit (PTE) Units Potential to Emit (Ibs/hr) (Ibs/hr) Potential to Emit (Ibs/hr) Potential to Emit (Ibs/hr) Potential to Emit (Ibs/hr) Particulate emissions (PE/PM) (formerly particulate matter, PM) PM #10 microns in diameter (PE/PM10) 3.)				Effic	iency Standards	1		
(tons/yr) (PTE) Units (lbs/hr) (tons/yr) Determination Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.)			Pre-Controlled	Potential		Potential	Potential	
(tons/yr) (PTE) Units (lbs/hr) (tons/yr) Determination Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.)	Storage	Tank Heater	Potential Emissions	to Emit		to Emit	to Emit	Basis for
Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.)			(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.)	Criteria Po	ollutants:						
(PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.)	1.)							
particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.)		Particulate emissions						
PM) 2.) PM #10 microns in diameter (PE/PM10) 3.)		(PE/PM) (formerly						
2.) PM #10 microns in diameter (PE/PM10) 3.)		particulate matter,						
PM #10 microns in diameter (PE/PM10) 3.)		PM)						
3.) diameter (PE/PM10)	2.)							
3.)		PM #10 microns in						
		diameter (PE/PM10)						
	3.)							
PM #2.5 microns in		PM #2.5 microns in						
diameter (PE/PM2.5)		diameter (PE/PM2.5)						
4.) Sulfur dioxide (SO2)	4.)	Sulfur dioxide (SO2)						Test results for this
o o lo source			0			0	0	source
5.) Nitrogen Oxides	5.)	Nitrogen Oxides	0.00			0.007	0.00	0.11
0.007 0.003 Other			0.03			0.007	0.03	Other
6.) Carbon monoxide 0.02 0.005 0.02 Other	6.)	Carbon monoxide	0.02			0.005	0.02	Other
(CO) 0.02 Other		(CO)	0.02			0.005	0.02	Other
7.) Volatile organic	7.)	Volatile organic						
compounds (VOC)		compounds (VOC)						
8.) Lead (Pb)	8.)	Lead (Pb)						
9.) Total Hazardous Air	9.)	Total Hazardous Air						
Pollutants (HAPs)								
10.) Fluoride (F)								
11.) Hydrogen Sulfide	11.)							
(H2S)								
12.) Mercury (Hg)								
13.) Total Reduced Sulfur	13.)							
(TRS)		· Company of the Comp			XI			
14.) Sulfuric Acid Mist	14.)	Proposal Action as received and analysis analysis and analysis and analysis and analysis and analysis analysis and analysis analysis analysis and analysis analys						
(SAM)		(SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminents

		Effic	iency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Greenhouse Gases (GHGs)

		Effic	ciency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8)						

Bear Oil & Gas, Inc. Armour Tank Battery Laramie County - Statewide Armour 41-17; API #49-021-21452 Armour 42-17; API #49-021-21480

Tank Heater

0.5 MMBtu/hr

2056 Btu/scf

LHV Ratio = 2.02

Fueled by produced gas

576 Annual Operating Hours (worse case)

70 VOC weight %

Emission Factors (EF)¹

NOx

100 lb/MMcf

CO

84 lb/MMcf

TOC

11 lb/MMcf

Pollutant	Burner Rating (MMBtu/hr)	EF (lb/MMcf)	1 MMcf/1020 MMBtu	LHV ratio	Emissions (lb/hr)	Ton/yr
NOx	0.5	100	0.001	2.02	0.099	0.03
со	0.5	84	0.001	2.02	0.083	0.02
тос	0.5	11	0.001	2.02	0.011	0.003
voc	0.5	11	0.001	2.02	0.008	0.002

¹ C6 S2 O&G Production Facilities Permitting Guidance, September 2013, Page 66 of 76

Specific Emission Unit Attributes:

Storage Tank/Silo

Company Equipment ID:	Armour Tank	Battery Produced W	ater Storage	Tank	
Company Equipment Description:		Produced Water Sto	rage Tank		
Operating Status: Operating					
Initial Construction Commencemer					
Initial Operation Commencement Date:		9/23/2014			
Most Recent Construction/ Modification		9 9		19	
Commencement Date:		5/31/2015 (estimated)			-
Most Recent Operation Commencement Date:		5/31/2015 (estimated)			
Select reason(s) for this emissions unit being included in this application (must be completed regardless of c					— eted regardless of date
of installation or modification):			1.52		
Reason: Construction	l/New Facility)				
If reason is <i>Reconstruction</i> or <i>Temporary Permit</i> or <i>Other</i> , please explain below:					
Material Type: Liquid Description of Material Stored:		Produced Water sto	ored in 1 abov	veground s	storage tank
Capacity: 400		Units:	barrels		
Maximum Throughput:	104.4	•		Units:	barrels/day
Maximum Hourly Throughput:	4.35			Units:	barrels/hr
Operating Pressure (psig):	1				
Vapor Pressure of Material Stored	(psig):	1		_	
Is Tank Heated?: No				_	
SCC Codes: List all Source Classifications source (e.g., 1-02-002-04).	ntion Code(s)	(SCC) that describe	the process(es) perforr	ned by the emission
		40400315			
Hours/day:	Provide the o	operating schedule fo	or this emissi 	on unit.	

Control Eq	uipment: Yes		
If yes, plea	se fill out and attach the appropri	te Control Device and Release	Point Information worksheets.
Best Avail	able Control Technology (BACT): V	PS040	or this emission unit?
	Yes	No	
Pollutant:			
Proposed			
*If yes, att	ach BACT Analysis with this applica	on.	
Lowest Ac	hievable Emission Rate (LAER): Wa	s a LAER Analysis completed fo	r this emission unit?
	Yes	No	
Pollutant:			
Proposed	_AER:		
	ach LAER Analysis with this applicat	on.	
Federal an	d State Rule Applicability:		
New Source	e Performance Standards (NSPS):	Not Affected	
	New Source Performance Standard	are listed under 40 CFR 60-	
	Standards of Performance for New	Stationary Sources.	
	NSPS Subpart:	•	
National E	mission Standards for Hazardous Ai	Pollutants (NESHAP Part 61):	Not Affected
	National Emissions Standards for	lazardous Air Pollutants (NESF	IAP Part 61) are listed under 40 CFR
	61. (These include asbestos, benz	ene, beryllium, mercury, and vii	yl chloride).
	Part 61 NESHAP Subpart:		
National E	mission Standards for Hazardous Ai	Pollutants (NESHAP Part 63):	Not Affected
	National Emission Standards for H	azardous Air Pollutants (NESH,	AP Part 63)
	standards are listed under 40 CFR	63	
	Part 63 NESHAP Subpart:		
Prevention	of Significant Deterioration (PSD):	Not Affected	
	These rules are found under WAC	SR Chapter 6, Section 4.	
		[a]	
Non-Attair	nment New Source Review:	Not Affected	
	These rules are found under WAC	SR Chapter 6, Section 13.	

Fugitives

Company Equipment ID: Armour Tank Battery Fugitives								
Company Equipment Description:	Fugitive Emissions							
Operating Status: Operating								
Initial Construction Commencement Date:								
Initial Operation Commencement Date:	9/23/2014							
Most Recent Construction/ Modification								
Commencement Date: 5/31/2015 (estimated)								
Most Recent Operation Commencement Date: 5/31/2015 (estimated)								
Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of								
installation or modification):								
Reason: Construction (Greenfield/New Facility)								
If reason is <i>Reconstruction</i> or <i>Temporary Permit</i> or <i>Other</i> , please explain below:								
Type of Fugitive Emission: Fugitive Leaks at O&G								
	(SCC) that describe the process(es) performed by the emission							
source (e.g., 1-02-002-04).								
	24000044							
	31088811							
Potential Operating Schedule: Provide the o	perating schedule for this emission unit.							
Hours/day: 24	perating scriedule for this emission unit.							
Hours/year: 8760								
7700 6700 6700								

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information workshe	ets.
у, у-с.) р. с.	
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?	
☐ Yes ✓ No	
Pollutant:	
Proposed BACT:	
*If yes, attach BACT Analysis with this application.	
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?	
☐ Yes ☑ No	
Pollutant:	
Proposed LAER:	
*If yes, attach LAER Analysis with this application.	
Federal and State Rule Applicability:	
New Source Performance Standards (NSPS): Not Affected	
New Source Performance Standard are listed under 40 CFR 60-	
Standards of Performance for New Stationary Sources.	
NSPS Subpart:	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affect	:ed
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under	40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).	
Part 61 NESHAP Subpart:	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63):	d
	.ea
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63	
Part 63 NESHAP Subpart:	
rait 03 NESHAF Subpart.	
Prevention of Significant Deterioration (PSD):	
These rules are found under WAQSR Chapter 6, Section 4.	
N. A	
Non-Attainment New Source Review: Not Affected Those rules are found under WAOSE Chapter 6. Section 13.	
These rules are found under WAQSR Chapter 6, Section 13.	

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

			Effic	iency Standards			
		Pre-Controlled	Potential		Potential	Potential	
Fugitive.	S	Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Criteria Po	llutants:						
1.)							
	Particulate emissions						
	(PE/PM) (formerly						
	particulate matter,						
	PM)			A STATE OF THE STA			
2.)							
	PM #10 microns in						
	diameter (PE/PM10)						
3.)							
	PM #2.5 microns in						
	diameter (PE/PM2.5)						
4.)	Sulfur dioxide (SO2)						
5.)	Nitrogen Oxides						
	(NOx)						
6.)	Carbon monoxide						
	(CO)						
7.)	Volatile organic	1.01			0.44	1.01	O.I.
	compounds (VOC)	1.91			0.44	1.91	Other
8.)	Lead (Pb)						
9.)	Total Hazardous Air	0.20			0.05	0.20	Other
	Pollutants (HAPs)	0.28			0.06	0.28	Otner
10.)	Fluoride (F)						
	Hydrogen Sulfide	0					Test results for this
	(H2S)	0			0	0	source
12.)	Mercury (Hg)						
13.)	Total Reduced Sulfur						
	(TRS)						
14.)	Sulfuric Acid Mist						
	(SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminents

		Effic	iency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Greenhouse Gases (GHGs)

		Effic	ciency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
81						

Bear Oil & Gas, Inc.
Armour Tank Battery
Laramie County - Statewide
Armour 41-17; API #49-021-21452
Armour 42-17; API #49-021-21480

Fugitive Emissions

		Gas			Light Oil (>20°API)	(10	W	Water/Light Oil		Facility	Facility
Equipment Type	040	EPA Emission	Total	Otv.1	EPA Emission	Total	Otv1	EPA	Total	Total	Total
	طربه	Factor 2	(lbs/day)	Kit)	Factor 2	(lbs/day)	for	Emission	(lbs/day)	(Ib/day)	(tons/yr)
Connector	14	0.011	0.154	09	0.011	99.0	10	0.0058	0.058	0.87	0.16
Flange	10	0.021	0.21	9	0.0058	0.0348	0	0.00015	0	0.24	0.04
Open ended line	0	0.11	0	9	0.074	0.444	0	0.013	0	0.44	0.08
Other	9	0.47	2.82	10	0.4	4	0	0.74	0	6.82	1.24
Pump	0	0.13	0	1	0.69	0.69	0	0.0013	0	0.69	0.13
Valve	8	0.24	1.92	30	0.13	3.9	9	0.0052	0.0312	5.85	1.07
VOC Weight Fraction ³ =		0.70						VOC EMISSIONS:	ONS:	10.44	1.91
HAP Weight Fraction ³ =		0.10						HAP EMISSIONS:	ONS:	1.52	0.28

¹ Based on typical component count for facility type

Gas = Treater/flare Light Oil = All Others

Water/Light Oil = Produced Water Components

 $^{^{2}}$ C6 S2 O&G Production Facilities Permitting Guidance, September 2013, Page 70 of 76

³ Calculated actual measured weight fractions based on laboratory analysis

Separator/Treater

Company Equipment ID: Armour	Tank Battery Heater Treater							
Company Equipment Description:	Company Equipment Description: Heater Treater							
Operating Status: Operating								
Initial Construction Commencement Date:								
Initial Operation Commencement Date:	9/23/2014							
Most Recent Construction/ Modification								
Commencement Date:	5/31/2015 (estimated)							
Most Recent Operation Commencement Date: 5/31/2015 (estimated)								
11/10/10 10 10 10 10 10 10 10 10 10 10 10 10 1	ing included in this application (must be completed regardless of date							
of installation or modification):	ing included in this application (must be completed regardless of date							
Reason: Construction (Greenfield/New Facility)								
Reason. Constitution (or conneita) New Facility)								
If reason is Reconstruction or Temporary Permit or Other , please explain below:								
Treason is Reconstruction of Temporary Permit of Other , please explain below.								
Type of Vessel: Heater-Treater	Is Vessel Heated? Yes							
Operating Temperature (F): 180	15 Vessel Heateal							
Operating Pressure (psig): 12								
operating ressure (psig).								
SCC Codes: List all Source Classification Code(s) (SCC) that describe the process(es) performed by the emission								
source (e.g., 1-02-002-04).								
300100 (0.8.) 1 02 002 04).								
	31000107							
Potential Operating Schedule: Provide	the operating schedule for this emission unit.							
Hours/day: 24								
Hours/year: 8760								

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability: New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6. Section 13.

Heater/Chiller

Company Equipment ID:	Armour Ta	nk Battery Hea	ater Treater Burner				
Company Equipment Descr	iption:	Heater Treate	er Burner				
W 50 10 10	95						
Operating Status: Op	erating						
Initial Construction Comme	ncement Date:						
Initial Operation Commence	ement Date:		9/23/2014				
Most Recent Construction/	Modification						
Commencement Date:		5/	'31/2015 (estimate	d)			
Most Recent Operation Cor							
Date:	5/	'31/2015 (estimate	d)				
Select reason(s) for this em	nissions unit being	included in th	is application (mus	t be complet	ed regardless of date		
of installation or modification):							
Reason: Coi	nstruction (Greenfi	eld/New Facilit	ty)				
If reason is <i>Reconstruction</i> or <i>Temporary Permit</i> or <i>Other,</i> please explain below:							
Heat Input Rating: 0.7 Primary Fuel Type: Fie Secondary Fuel Type:	ld Gas		Units:	MMBtu/hr			
Heat Content of Fuel: 20!	56			Units:	BTU/scf		
Fuel Sulfur Content: 0			Units:	ppm			
SCC Codes: List all Source C source (e.g., 1-02-002-04).	Classification Code(s	s) (SCC) that de 310001		(es) performe	d by the emission		
Potential Operating Sched Hours/day: Hours/year:	Provide th 24 8760	e operating sc	hedule for this emi 	ssion unit.			

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
,, , , , , , , , , , , , , , , , , , ,
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ☑ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
☐ Yes ✓ No
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability: New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6. Section 13.

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

			Effic	iency Standards			
		Pre-Controlled	Potential		Potential	Potential	
Heater 7	Treater	Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Criteria Po	llutants:						
1.)							
	Particulate emissions						
	(PE/PM) (formerly						
	particulate matter,						
	PM)						
2.)			1 111111111				
	PM #10 microns in						
	diameter (PE/PM10)						
3.)							
	PM #2.5 microns in						
	diameter (PE/PM2.5)						
4.)	Sulfur dioxide (SO2)	0			0		Test results for this
		0			U	0	source
5.)	Nitrogen Oxides	0.65			0.15	0.65	Other
	(NOx)	0.63			0.15	0.65	Other
6.)	Carbon monoxide	0.55			0.13	0.55	Other
	(CO)	0.55			0.13	0.55	Other
7.)	Volatile organic						
	compounds (VOC)						
	Lead (Pb)						
9.)	Total Hazardous Air						
	Pollutants (HAPs)						
	Fluoride (F)						
11.)	Hydrogen Sulfide						
	(H2S)						
	Mercury (Hg)						
13.)	Total Reduced Sulfur						
	(TRS)						
14.)	Sulfuric Acid Mist						
	(SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminents

		Effic	iency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Greenhouse Gases (GHGs)

			Effic	iency Standards			
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:	:						
1.)							
2.)							
3.)							
4.)							
5.)							
6.)							
7.)							
8.)							

Bear Oil & Gas, Inc.
Armour Tank Battery
Laramie County - Statewide
Armour 41-17; API #49-021-21452
Armour 42-17; API #49-021-21480

Heater Treater

0.75 MMBtu/hr

2056 Btu/scf

LHV Ratio = 2.02

Fueled by produced gas

8760 Annual Operating Hours (worse case)

70 VOC weight %

Emission Factors (EF)¹

NOx

100 lb/MMcf

CO

84 lb/MMcf

TOC

11 lb/MMcf

Pollutant	Burner Rating (MMBtu/hr)	EF (lb/MMcf)	1 MMcf/1020 MMBtu	LHV ratio	Emissions (lb/hr)	Ton/yr
NOx	0.75	100	0.001	2.02	0.148	0.65
со	0.75	84	0.001	2.02	0.124	0.55
тос	0.75	11	0.001	2.02	0.016	0.07
voc	0.75	11	0.001	2.02	0.011	0.050

¹ C6 S2 O&G Production Facilities Permitting Guidance, September 2013, Page 66 of 76

Flare

ompany Equipment ID: Armour Tar		ank Battery Emergency Flare
Company Equipment Description:		Emergency Flare
Operating Status: Operating		
Initial Construction Commencemen	t Date:	
Initial Operation Commencement D		9/23/2014
Most Recent Construction/ Modification	ation	
Commencement Date:		5/31/2015 (estimated)
Most Recent Operation Commence	ment Date:	5/31/2015 (estimated)
Select reason(s) for this emissions	unit being in	ncluded in this application (must be completed regardless of date
of installation or modification):		
Reason: Construct	tion (Greenfi	ield/New Facility)
If reason is <i>Reconstruction</i> or <i>Temp</i>	oorary Permi	to Other, please explain below.
Maximum Design Capacity (MMSCF	/hr):	0.0002
Minimum Design Capacity (MMSCF,	/hr):	0
Pilot Gas Volume (scf/min):		
Emergency Flare Only: Yes		Ignition Device Type: Other
Btu Content (Btu/scf): 2056		Smokeless Design:
Assist Gas Utilized? No		Continuously Monitored?
Waste Gas Volume:		Units:
Installation Date: 9/23/201	.4	
SCC Codes: List all Source Classifica source (e.g., 1-02-002-04).	tion Code(s)	(SCC) that describe the process(es) performed by the emission 31000160
Potential Operating Schedule:	Provide th	ne operating schedule for this emission unit.
Hours/day:	0	
Hours/year:	0	

Control Equipment: No If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.					
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit? \textstyle \t					
Proposed BACT:					
*If yes, attach BACT Analysis with this application.					
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? ☐ Yes ☑ No Pollutant:					
Proposed LAER:					
*If yes, attach LAER Analysis with this application.					
Federal and State Rule Applicability: New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart:					
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected					
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:					
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63):					
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:					
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.					
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6, Section 13.					

Control Equipment:

Flare/Combustor

Manufacturer:	Cimarron		Date Installed	:	9/23/2014	
Model Name and			Company Con	trol		
Number:	48" Standard ECD		Equipment ID	:]	ECD	
Company Control Equ	ipment					
Description:	Armour T	ank Battery ECD				
Pollutant(s) Controlle	d: CO	□ NOx □	Pb	√ VOC	☐ PM	
PM (FIL)	PM Condensible	e 🗌 PM 10 (F	TL)	(FIL)	☐ PM 10 ☐ PM 2.5	
Other						
NOTE: The following	fields require numeri	c values unless	otherwise denoted wi	th an aster	risk*	
Maximum Design Cap	pacity (MMSCF/hr):	0.00125				
Minimum Design Cap	acity (MMSCF/hr):	0.0002				
Design Control Efficie	ncy (%): 99	Ca	pture Efficiency (%):			
Operating Control Eff	iciency (%):					
Flare Type:*	Enclosed	Ele	evated Flare Type:*			
Ignition Device:*	Yes	 Flam	ne Presence Sensor:*	'es		
Inlet Gas Temp (F):	65	01 	Flame Presen	ce Type:*	Other	
Gas Flow Rate (acfm)	:		Outlet Gas Te	mp (F):		
☑ This is the	only control equipme	nt on this air co	ntaminant source			
If not, this control eq	uipment is:	Primar	y 🔲 Second	ary	Parallel	
List all other emissio	n units that are also					
vented to this control equipment:*		Oil Storage Tanks; Produced Water Storage Tank				
List all release point	IDs associated with					
this control equipme	nt:*	ECD				

Release Point Information:

Complete the table below for *each* release point. Please include release point information for each emission unit. Multiple attachments may be necessary. A release point is a point at which emissions from an emission unit are released into the ambient (outside)air. List each individual release point on a separate pair of lines (release point ID and description). *For longitude and latitude, use NAD 83/WGS84 datum and 5 digits after the decimal (i.e.* 41.12345, -107.56789)

Stack Release Point Information							
Company Release Point ID:	Release Point Type:	Vertical					
Armour Tank Battery Heater Treater	Release Point Latitude:		41.357162°N				
,	Release Point Longitud	e:	-104.100121°W				
Company Release Point Description:	Base Elevation (ft):	5308					
Heater Treater	Stack Height (ft):	20					
	Stack Diameter (ft):	1.5					
	Exit Gas Velocity (ft/s):		0.13				
*	Exit Gas Temp (F):	Unknown					
	Exit Gas Flow Rate (acf	m):	6.1				
Company Release Point ID:	Release Point Type:	Vertical					
Armour Tank Battery ECD	Release Point Latitude:		41.357299°N				
	Release Point Longitud	e:	-104.100114°W				
Company Release Point Description:	Base Elevation (ft):	5308					
ECD	Stack Height (ft):	12					
	Stack Diameter (ft):	4					
	Exit Gas Velocity (ft/s):		0.11				
	Exit Gas Temp (F):	Unknown					
	Exit Gas Flow Rate (acf	m):	79.9				
Company Release Point ID:		Vertical					
Armour Tank Battery Oil Storage Tank Heater	Release Point Latitude:	:	41.356826°N				
	Release Point Longitud	e:	-104.100122°W				
Company Release Point Description:	Base Elevation (ft):	5308					
Oil Storage Tank Heater	Stack Height (ft):	20					
	Stack Diameter (ft):	1.5					
	Exit Gas Velocity (ft/s):		0.09				
	Exit Gas Temp (F): Unknown						
	Exit Gas Flow Rate (acf	m):	4.1				
Company Release Point ID:	Release Point Type:						
	Release Point Latitude:	:					
	Release Point Longitud	le:					
Company Release Point Description:	Base Elevation (ft):						
	Stack Height (ft):						
	Stack Diameter (ft):						
	Exit Gas Velocity (ft/s):						
	Exit Gas Temp (F):						
I	Exit Gas Flow Rate (acf	m):					

Complete the table below for each fugitive (area, volume, line) release point. List each individual release point on a separate line.

Fugitive Release Point Information						
Company Release Point ID:	Release Point Latitude:	41.357162°N				
Armour Tank Battery Fugitives	Release Point Longitude:	-104.100121°W				
	Release Height (ft): 0 - 20					
Company Release Point Description:						
Facility Fugitive Emissions						
Company Release Point ID:	Release Point Latitude:					
	Release Point Longitude:					
	Release Height (ft):					
Company Release Point Description:						
		,				
Company Release Point ID:	Release Point Latitude:					
	Release Point Longitude:					
	Release Height (ft):					
Company Release Point Description:						
Company Release Point ID:	Release Point Latitude:					
	Release Point Longitude:					
	Release Height (ft):					
Company Release Point Description:						